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Problem of two Coulomb centres at large intercentre
separation: asymptotic expansions from analytical
solutions of the Heun equation

A A Bogush and V S Otchik
B I Stepanov Institute of Physics of the Academy of Sciences of Belarus F Skariny avenue 70,
220602, Minsk, Belarus

Received 11 July 1996

Abstract. The case of large intercentre distance in the two Coulomb centres problem is studied
by solving separated wave equations with the help of a series of confluent hypergeometric
functions. By considering the confluence of two singularities in an auxiliary equation with four
regular singularities, new relations between the solutions of the quasi-angular equation are found
and used to obtain exponentially small terms in the asymptotic expansion for energy eigenvalues.
For some electronic states, energy splittings at pseudocrossings are evaluated, and results are
compared with those of earlier asymptotic and numerical calculations.

1. Introduction

The motion of an electron in the field of two Coulomb charges is one of the basic quantum
mechanical problems which has been of great importance for the progress of quantum theory
and is still of significant interest because of its numerous applications.

This problem is separable in the prolate spheroidal coordinates. Various numerical
methods have been used for the solution of the separated two-centre equations (see, e.g.,
[1] and references therein, and [2, 3]). The separability of the problem is also helpful for
obtaining some general analytic results in the regions of large and small intercentre distances
R by applying perturbative or asymptotical methods [1, 4–14]. In this paper the case of
largeR is discussed.

The Schr̈odinger equation for the two Coulomb centres problem (in atomic units,
m = e = h̄) is (

−1

2
1− Z1

r1
− Z2

r2

)
ψ = Eψ (1)

where r1 and r2 are distances from the electron to chargesZ1 and Z2. Introducing the
prolate spheroidal coordinates

ξ = r1 + r2

R
η = r1 − r2

R
ϕ = arctan

y

x
1 6 ξ < ∞ − 1 6 η 6 1 0 6 ϕ < 2π (2)

and presenting the wavefunction in the formψ = u(ξ)v(η) exp(imϕ) we obtain the equations

d

dξ
(ξ2 − 1)

du

dξ
+

[
−λ− p(ξ2 − 1)+ aξ − m2

ξ2 − 1

]
u = 0 (3)
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d

dη
(1 − η2)

dv

dη
+

[
λ− p(1 − η2)+ bη − m2

1 − η2

]
v = 0 (4)

wherep = R(−E/2)1/2, a = R(Z1+Z2), b = R(Z1−Z2), andλ is the separation constant.
We only consider bound states withE < 0.

Different techniques have been used to derive the largeR asymptotic expansions for
eigenvalues of energy from the separated equations. Komarov and Slavyanov [4] developed
a comparison-equation method and applied it to find expansions in powers of 1/R for
eigenvalues of energy as well as exponentially small corrections to these eigenvalues for both
casesZ1 = Z2 andZ1 6= Z2. On the other hand, Damburg and Propin [5, 6] and Power [7]
used expansions of solutions of the separated equations in series of confluent hypergeometric
functions to determine 1/R expansions for energy. Damburg and Propin [5] have also found,
with the help of such an expansion, exponentially small splittings between even and odd
states for the caseZ1 = Z2. In the caseZ1 6= Z2, this expansion of solutions has not been
used for evaluation of exponentially small corrections to eigenvalues of energy because of
difficulties arising in matching solutions of the quasi-angular equation which are defined
on different intervals. Power [7] and Greenland [10] have used the comparison-equation
method of Komarov and Slavyanov to find expansions of these corrections in powers of
1/R. Calculations in this method become intricate in higher orders of approximation, and
only terms up to and including O(1/R2) have been obtained.

In this paper, we develop a new approach to the evaluation of exponentially small terms
in the largeR asymptotic expansion for energy eigenvalues of the two Coulomb centres
problem. We consider the quasi-angular equation (4) as a limiting (confluent) case of the
equation

(γ 2 − η2)
d

dη
(1 − η2)

dv

dη
+

[
3− 2Eρ2γ 2(1 − η2)

γ 2 − η2

+2(Z2 − Z1)ργ (γ
2 − 1)η

γ 2 − η2
− m2(γ 2 − η2)

1 − η2

]
v = 0. (5)

This equation arises by separating variables in the Schrödinger equation for a particle moving
in the field of two Coulomb charges in the space of constant negative curvature [15]. In (5),
ρ denotes radius of curvature,3 is the separation constant, andγ = coth(R/2ρ), where
R is the distance between charges in the curved space. In the limit of vanishing curvature,
that is forρ → ∞, whenR → R, 2ρ/γ → R, and3/γ 2 → λ, equation (4) is obtained
from equation (5). By taking this limit in relations between solutions of equation (5) we
find new asymptotic relations between solutions of the quasi-angular equation (4). Then we
apply these relations to the computation of splittings of potential curves at pseudocrossings.
These splittings are important in the study of charge exchange reactions between atomic
hydrogen and heavy ions [16].

2. Solutions of separated equations and connection relations

Following Power [7], we take solutions of the quasiradial equation (3) in the form due to
Hyleraas [17]

u = (ξ2 − 1)m/2e−p(ξ−1)
∞∑

k=−n1

ckLn1+k(2p(ξ − 1)) (6)
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whereLmn1+k are Laguerre polynomials, andn1 is a parabolic quantum number. Coefficients
ck obey the three-term recurrence relation

α
(ξ)

k ck+1 + β
(ξ)

k ck + γ
(ξ)

k ck−1 = 0 (7)

where

α
(ξ)

k = (n1 + k +m+ 1)(n1 + k + 1 − a/2p)

β
(ξ)

k = −2p(2n1 + 2k +m+ 1)+ a + (m+ 1)(n1 +m+ k)− (2n1 + 2k +m+ 1)

×(n1 + k +m+ 1 − a/2p)− λ

γ
(ξ)

k = (n1 + k)(n1 + k +m− a/2p) (8)

with boundary conditionc−n1−1 = 0.
Asymptotic expansion forp � 1 of the solution of the quasi-angular equation (4) which

is valid nearη = −1 may be presented in the form [5, 7]

v1 = (1 − η2)m/2e−p(1+η)
∞∑

k=−∞
dk8(−ν2 − k,m+ 1; 2p(1 + η)) (9)

where8 denotes the confluent hypergeometric function [18], andν2 is some parameter. As
ν2 is not integer, series (9) is infinite on both sides. Coefficientsdk satisfy the recurrence
relation

α
(η)

k dk+1 + β
(η)

k dk + γ
(η)

k dk−1 = 0 (10)

where

α
(η)

k = (ν2 + k + 1)(ν2 + k + 1 + b/2p)

β
(η)

k = 2p(2ν2 + 2k +m+ 1)+ b + (m+ 1)(ν2 +m+ k)− (2ν2 + 2k +m+ 1)

×(ν2 + k +m+ 1 + b/2p)− λ

γ
(η)

k = (ν2 + k +m)(ν2 + k +m+ b/2p). (11)

Asymptotic expansion for the solution of (4) nearη = 1 is given by

v′
1 = (1 − η2)m/2e−p(1−η)

∞∑
k=−∞

dk8(−ν ′
2 − k,m+ 1; 2p(1 − η)) (12)

whereν ′
2 = ν2 + b/2p. Note that the recurrence relation (10) can be expressed in terms of

ν ′
2 instead ofν2,

α
(η)

k = (ν ′
2 + k + 1)(ν ′

2 + k + 1 − b/2p)

β
(η)

k = 2p(2ν ′
2 + 2k +m+ 1)− b + (m+ 1)(ν ′

2 +m+ k)− (2ν ′
2 + 2k +m+ 1)

×(ν ′
2 + k +m+ 1 − b/2p)− λ

γ
(η)

k = (ν ′
2 + k +m)(ν ′

2 + k +m− b/2p). (13)

Series (9) and (12) are supposed to represent the same wavefunction, but matching of these
series for the caseZ1 6= Z2 has never been accomplished.

We are going to find relations which connect series (9) and (12) with the help of
relations between solutions of equation (5). This equation has four regular singularities
η = ±1, η = ±γ (the point at infinity is an ordinary point), and can be reduced to the Heun
equation [18, vol 3, p 57]. This reduction is effected by a linear fractional transformation
of the independent variable, such as

η = −γ [z(γ − 1)+ 2]/[2γ − z(γ − 1)] (14)
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or

η = γ [y(γ − 1)+ 2]/[2γ − y(γ − 1)] (15)

and a suitable transformation of the dependent variable,

v = zm/2(1 − z)µ+(z − a)m/2g (16)

or

v = zm/2(1 − z)µ−(z − a)m/2g′ (17)

where

µ± = 1
2{1 − [−2Eρ2 ∓ 2(Z2 − Z1)ρ + 1]1/2} a = −4γ /(γ − 1)2

z = 2γ (η + 1)/[(γ − 1)(η − γ )] y = 2γ (η − 1)/[(γ − 1)(η + γ )]. (18)

As a result, we obtain the Heun equation forg

d2g

dz2
+

(
m+ 1

z
+ 2µ+
z − 1

+ m+ 1

z − a

)
dg

dz
+ ABz − q

z(z − 1)(z − a)
g = 0 (19)

where

A = µ+ + µ− +m B = 1 + µ+ − µ− +m

q = (m+ 1)(µ+a +m)+ ρ(Z1 − Z2)a/2 −3a/4γ (20)

and the equation forg′ can be obtained by replacementsµ+ 
 µ− andZ1 
 Z2 in (19)
and (20).

Solutions of the Heun equation in the form of a series of hypergeometric functions were
studied by Erdelyi [19]. We will consider solutions of equation (5) which have solutions of
(4) as their limiting cases,

v1(ρ) = φ(z, µ+)
∞∑

k=−∞
d
(ρ)

k 2F1(−ν(ρ) − k,m+ ν(ρ) + k + 2µ+;m+ 1; z) (21)

v′
1(ρ) = φ(y, µ−)

∞∑
k=−∞

d
(ρ)

k 2F1(−ν ′
(ρ) − k,m+ ν ′

(ρ) + k + 2µ−;m+ 1; y) (22)

where

φ(x, µ) = (γ /2)m(−x)m/2(1 − x)µ(x − a)m/2 ν ′
(ρ) = ν(ρ) + µ+ − µ− (23)

ν(ρ) is a parameter and2F1 denotes the hypergeometric function. Coefficientsd
(ρ)

k satisfy
the recurrence relation

α
(η,ρ)

k d
(ρ)

k+1 + β
(η,ρ)

k d
(ρ)

k + γ
(η,ρ)

k d
(ρ)

k−1 = 0 (24)

where

α
(η,ρ)

k = (ν(ρ) + k + 1)(ν ′
(ρ) + k + 1)(ν ′

(ρ) + 2µ− + k)(ν(ρ) + 2µ+ + k)

(2ν(ρ) + 2µ+ + 2k +m+ 1)(2ν(ρ) + 2µ+ + 2k +m+ 2)

β
(η,ρ)

k =
(
a − 1

2

) [
3

4γ
+ Eρ2

2
+ (ν(ρ) + µ+ + k +m)(ν(ρ) + µ+ + k)

]
+5m2 − 1

8
+ 3

8γ
+ Eρ2

4

− [(2µ+ − 1)2 −m2][(2µ− − 1)2 −m2]

8(2ν(ρ) + 2µ+ + 2k +m+ 1)(2ν(ρ) + 2µ+ + 2k +m− 1)
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γ
(η,ρ)

k = (ν(ρ) + k +m)(ν ′
(ρ) + k +m)

× (ν(ρ) + 2µ+ + k +m− 1)(ν ′
(ρ) + 2µ− + k +m− 1)

(2ν(ρ) + 2µ+ + 2k +m− 1)(2ν(ρ) + 2µ+ + 2k +m− 2)
. (25)

Introducing the continued fractions

R
(ρ)

k = d
(ρ)

k

d
(ρ)

k−1

= −γ (η,ρ)k

β
(η,ρ)

k + α
(η,ρ)

k R
(ρ)

k+1

L
(ρ)

k = d
(ρ)

k

d
(ρ)

k+1

= −α(η,ρ)k

β
(η,ρ)

k + γ
(η,ρ)

k L
(ρ)

k−1

(26)

we can write down a transcendental equation

R
(ρ)

1 L
(ρ)

0 = 1. (27)

Now, convergence of series (21) and (22) can be examined following the approach of
Erdelyi [19], with the difference that in our case series are infinite in two directions like
the series solutions of the equation of spheroidal wavefunctions [18, vol 3, p 135]. In this
way it can be shown that if (27) is satisfied, then the series (21) is convergent inside the
ellipse in the complexz plane which has foci atz = 0 andz = 1 and which passes through
z = a, and series (22) is convergent inside the similar ellipse in they plane. From (14)
and (15) we can see thatη = −1 lies inside the domain of convergence of the series (21)
and on the boundary of the domain of convergence of the series (22); the pointη = 1 lies
inside the domain of convergence of the series (22) and on the boundary of the domain of
convergence of the series (21).

Coefficientsα(η,ρ)k , β
(η,ρ)

k , andγ (η,ρ)k of (25) in the recurrence relation (24) have as their
limits, whenρ → ∞, coefficientsα(η)k , β

(η)

k , andγ (η)k of (11), respectively, and equation (27)
for parameterν(ρ) has equation

R1L0 = 1 (28)

as its limiting case. In (28)

Rk = dk

dk−1
= −γ (η)k

β
(η)

k + α
(η)

k Rk+1

Lk = dk

dk+1
= −α(η)k
β
(η)

k + γ
(η)

k Lk−1

. (29)

Hence for ρ → ∞ we can take parameterν(ρ) = ν2 + O(1/ρ), and coefficients
d
(ρ)

k = dk + O(1/ρ). In this limit hypergeometric functions occurring in expansions (21)
and (22) also go over into confluent hypergeometric functions which enter (9) and (12). It
follows that as,ρ → ∞,

v1(ρ) → v1 v′
1(ρ) → v′

1. (30)

Domains of convergence of series (9) and (12) can be determined as limits to which domains
of convergence of series (21) and (22) tend, respectively, asρ → ∞. In this way we find
that series (9) and (12) converge in the halfplanes−∞ < Reη < 1 and−1 < Reη < ∞,
respectively, provided (28) is satisfied.

Using relations between Kummer’s series solutions of the hypergeometric equation [18,
vol 1, p 105], we can present solutions (21) and (22) of equation (5) as linear combinations
of further solutions of this equation

v1(ρ) = 0(m+ 1)(v2(ρ) + v3(ρ)) v′
1(ρ) = 0(m+ 1)(v′

2(ρ) + v′
3(ρ)) (31)

where
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v2(ρ) = φ(z, µ+)
∞∑

k=−∞

d
(ρ)

k 0(2ν(ρ) + 2k + 2µ+ +m)(−z)ν(ρ)+k
0(ν(ρ) + k + 2µ+ +m)0(ν(ρ) + k +m+ 1)

×2F1(−ν(ρ) − k,−ν(ρ) − k −m; 1 − 2ν(ρ) − 2k − 2µ+ −m; 1/z)

v3(ρ) = (1 − z)1−2µ+φ(z, µ+)
∞∑

k=−∞

d
(ρ)

k 0(−2ν(ρ) − 2k − 2µ+ −m)(−z)−ν(ρ)−k−m−1

0(−ν(ρ) − k − 2µ+ + 1)0(−ν(ρ) − k)

×2F1(ν(ρ) + k + 1, ν(ρ) + k +m+ 1; 1 + 2ν(ρ) + 2k + 2µ+ +m; 1/z) (32)

v′
2(ρ) = φ(y, µ−)

∞∑
k=−∞

d
(ρ)

k 0(2ν ′
(ρ) + 2k + 2µ+ +m)(−y)ν ′

(ρ)+k

0(ν ′
(ρ) + k + 2µ+ +m)0(ν ′

(ρ) + k +m+ 1)

×2F1(−ν ′
(ρ) − k,−ν ′

(ρ) − k −m; 1 − 2ν ′
(ρ) − 2k − 2µ− −m; 1/y)

v′
3(ρ) = (1 − y)1−2µ−φ(y, µ−)

∞∑
k=−∞

d
(ρ)

k 0(−2ν ′
(ρ) − 2k − 2µ− −m)(−y)−ν ′

(ρ)−k−m−1

0(−ν ′
(ρ) − k − 2µ− + 1)0(−ν ′

(ρ) − k)

×2F1(ν
′
(ρ) + k + 1, ν ′

(ρ) + k +m+ 1; 1 + 2ν ′
(ρ) + 2k + 2µ− +m; 1/y). (33)

Now, let us describe a closed circuit in the complex plane ofη making positive loops
around pointsη = 1 andη = γ , which is equivalent to describing negative loops around
pointsη = −1 andη = −γ , then by (18) we have

y → e2π iy 1 − y → e2π i(1 − y) z → e−2π iz 1 − z → e−2π i(1 − z)

and it is easily seen that the effect of this circulation on the solutions (32) and (33) of
equation (5) is

v2(ρ) → exp[−2π i(ν(ρ) + µ+)]v2(ρ) v′
2(ρ) → exp[2π i(ν(ρ) + µ+)]v′

2(ρ)

v′
3(ρ) → exp[−2π i(ν(ρ) + µ+)]v′

3(ρ) v3(ρ) → exp[2π i(ν(ρ) + µ+)]v3(ρ). (34)

Sincev2(ρ), v
′
2(ρ), v3(ρ), and v′

3(ρ) are solutions of an ordinary differential equation of the
second order, equation (34) implies that

v′
3(ρ) = K(ρ)v2(ρ) v3(ρ) = K ′

(ρ)v
′
2(ρ) (35)

whereK(ρ) andK ′
(ρ) are some constants.

Taking the limitρ → ∞ in equations (31)–(33) we find

vi(ρ) → vi v′
i(ρ) → v′

i i = 2, 3 (36)

and

v1 = 0(m+ 1)(v2 + v3) v′
1 = 0(m+ 1)(v′

2 + v′
3) (37)

where

v2 = (1 − η2)m/2e−p(1+η)
∞∑

k=−∞

dk exp[−iεπ(ν2 + k)]

0(m+ ν2 + k + 1)
9(−ν2 − k,m+ 1; 2p(1 + η))

v3 = (1 − η2)m/2e−p(1+η)
∞∑

k=−∞

dk exp[−iεπ(ν2 + k +m+ 1)]

0(−ν2 − k)

×9(m+ ν2 + k + 1, m+ 1; −2p(1 + η)) (38)

v′
2 = (1 − η2)m/2e−p(1−η)

∞∑
k=−∞

dk exp[−iε′π(ν ′
2 + k)]

0(m+ ν ′
2 + k + 1)

9(−ν ′
2 − k,m+ 1; 2p(1 − η))



Problem of two Coulomb centres 565

v′
3 = (1 − η2)m/2e−p(1−η)

∞∑
k=−∞

dk exp[−iε′π(ν ′
2 + k +m+ 1)]

0(−ν ′
2 − k)

×9(m+ ν ′
2 + k + 1, m+ 1; −2p(1 − η)). (39)

Here 9 denotes the second solution of the confluent hypergeometric equation [18],
ε = sign(Im(2p(1 + η))), and ε′ = sign(Im(2p(1 − η))). 9 is defined in the complex
plane with the cut from 0 to infinity, and its argument in (38) and (39) should be taken on
the shore of this cut. For realη from the interval−1 6 η 6 1 we haveε′ = ε = sign(Im2p).

From relations (35) we obtain, in the limitρ → ∞, relations between series (38) and
(39)

v′
3 = Kv2 v3 = K ′v′

2 (40)

whereK andK ′ are constants. Relations (37), (38), and (39) can also be obtained from (9)
and (12) by making use of properties of confluent hypergeometric functions. However, it
would be difficult to derive relations (40) without the use of the limiting procedure, since
the circuit which we have used to obtain (35) passes between singularitiesγ and−γ which
coalesce asρ → ∞.

From (37) and (40) it is seen that equation

KK ′ = 1 (41)

is the necessary condition for solutions of the quasi-angular equation (4) to be finite for
−1 6 η 6 1.

To derive explicit expressions forK andK ′, suitable for asymptotic expansions at large
R, we consider solutions of equation (5) of the form

ṽ(ρ) = ỹµ+(ỹ − 1)m/2(ỹ − a)1−µ−0(µ++µ−+m)
∞∑

k=−∞

d
(ρ)

k σkỹ
ν(ρ)+k

0(−ν ′
(ρ) − k)0(ν(ρ) + k +m+ 1)

×2F1(−ν(ρ) − k − 2µ+ + 1,−ν(ρ) − k; 1 − 2ν(ρ) − 2k − 2µ+ −m; 1/ỹ)

(42)

ṽ′
(ρ) = z̃µ−(z̃− 1)m/2(z̃− a)1−µ+0(µ+ + µ− +m)

∞∑
k=−∞

d
(ρ)

k σkz̃
ν ′
(ρ)+k

0(−ν(ρ) − k)0(ν ′
(ρ) + k +m+ 1)

×2F1(−ν ′
(ρ) − k − 2µ− + 1,−ν ′

(ρ) − k; 1 − 2ν ′
(ρ) − 2k − 2µ− −m; 1/z̃)

(43)

whereỹ = a/y, z̃ = a/z, and

σk = 0(2ν(ρ) + 2k + 2µ+ +m)[0(ν(ρ) + k + 2µ+ +m)0(ν ′
(ρ) + k + 2µ− +m)]−1.

Series in (42) and (43) converge inside the ellipses in complex planesỹ and z̃ similar to
those described above. Using the same closed circuit as in the derivation of (35), we find
relations

v′
3(ρ) = K1(ρ)ṽ(ρ) ṽ(ρ) = K2(ρ)v2(ρ)

v3(ρ) = K ′
1(ρ)ṽ

′
(ρ) ṽ′

(ρ) = K ′
2(ρ)v

′
2(ρ) (44)

whereK1(ρ), K2(ρ), K
′
1(ρ), andK ′

2(ρ) are constants. Obviously,

K(ρ) = K1(ρ)K2(ρ) K ′
(ρ) = K ′

1(ρ)K
′
2(ρ). (45)

In the limit ρ → ∞ we have

ṽ(ρ) → ṽ ṽ′
(ρ) → ṽ′ (46)
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where

ṽ = ep(1−η)21+b/2p
∞∑

k=−∞

dk(1 + η)ν2+k+m/2(1 − η)−ν
′
2−k−1−m/2

0(ν2 + k +m+ 1)0(−ν ′
2 − k)

(47)

ṽ′ = ep(1+η)21−b/2p
∞∑

k=−∞

dk(1 − η)ν
′
2+k+m/2(1 + η)−ν2−k−1−m/2

0(ν ′
2 + k +m+ 1)0(−ν2 − k)

. (48)

Domains of convergence of series (42) and (43) shrink asρ → ∞ and formal series̃v
(47) andṽ′ (48) are divergent. Nevertheless, they are helpful for a short-cut derivation of
expressions forK andK ′. Taking formal limitρ → ∞ in (44) and (45) we obtain

v′
3 = K1ṽ ṽ = K2v2

v3 = K ′
1ṽ

′ ṽ′ = K ′
2v

′
2 (49)

and

K = K1K2 K ′ = K ′
1K

′
2. (50)

Now, expressions forK1,K2 and K ′
1,K

′
2 can be obtained by expanding confluent

hypergeometric functions which enter solutionsv2, v3 and v′
2, v

′
3 and sums which enter

solutionsṽ and ṽ′ on both sides of each of the equations (49) in a series of powers of 1+η
or 1− η and comparing like terms. Finally, using (50), we find

K = e2p+iεν2(4p)−(ν2+ν ′
2+m+1)0(ν2 +m+ 1)[0(ν ′

2 +m+ 1)0(ν2 + 1)]2[0(−ν ′
2)]

−1

×
∞∑
k=0

(−1)kd−k
k!0(ν ′

2 − k +m+ 1)

∞∑
k=0

(−1)k0(ν ′
2 − k + 1)d−k

k!0(ν2 − k +m+ 1)0(ν ′
2 − k +m+ 1)

×
[ ∞∑
k=0

0(ν2 + k + 1)dk
k!

∞∑
k=0

0(ν2 + k + 1)0(ν ′
2 + k + 1)dk

k!0(ν2 + k +m+ 1)

]−1

(51)

and expression forK ′ can be obtained from (51) by replacementsν2 
 ν ′
2. Series

which enter (51) and corresponding expression forK ′ are divergent. Nevertheless, these
expressions are suitable for derivation of asymptotic expansions for energy eigenvalues at
largeR.

3. Asymptotic evaluation of energy splittings at pseudocrossings

The first step in deriving asymptotic expansions for the energy is to obtain expansions of
the separation constantλ in powers of 1/p. Power [7] has given such expansions up to
and including O(1/p5). For convenience, we write down the first few terms of these. The
expansion derived from the recurrence relation (7) reads

λξ = 2p(S − 2κ)+ 2(κS − κ2 − ω)+ 1

2p
[2κ(κ2 + ω)− (3κ2 + ω)S + κS2] + O

(
1

p2

)
(52)

whereS = a/2p, κ = n1 + (m+ 1)/2, andω = (1 −m2)/4. From the recurrence relation
(10) expansions can be derived which may include either parameterν2 or ν ′

2

λη = 2p(2χ +D)− 2(χD + χ2 + ω)− 1

2p
[2χ(χ2 + ω)+ (3χ2 + ω)D + χD2]

+O

(
1

p2

)
(53)
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λ′
η = 2p(2χ ′ −D)+ 2(χ ′D − χ ′2 − ω)− 1

2p
[2χ ′(χ ′2 + ω)− (3χ ′2 + ω)D + χ ′D2]

+O

(
1

p2

)
(54)

whereD = b/2p, χ = ν2 + (m+ 1)/2, andχ ′ = ν ′
2 + (m+ 1)/2.

Power [7] also demonstrated how the expansion of the energy in powers of 1/R is
derived by equatingλξ andλη (or λξ andλ′

η). From (52) and (53) one obtains

En1ν2m = − Z2
1

2ν2
− Z2

R
+ 3ν(n1 − ν2)Z2

2Z1R2
+ O

(
1

R3

)
(55)

and from (52) and (54)

En1ν
′
2m

= − Z2
2

2ν ′2 − Z1

R
+ 3ν ′(n1 − ν ′

2)Z1

2Z2R2
+O

(
1

R3

)
(56)

whereν = n1 + ν2 + m + 1 andν ′ = n1 + ν ′
2 + m + 1. Expansions (55) and (56) depend

on parametersν2 andν ′
2 which are not yet determined. From (41) and (51) it is seen that

for largep, parameterν2 or ν ′
2, or both must be close to some integer numbers. We denote

ν2 = n2+δn2 andν ′
2 = n′

2+δn′
2. Since spheroidal coordinates become parabolic coordinates

asR → ∞, an integer numbern2 (or n′
2) can be identified with a parabolic quantum number

of an electronic state in the field of chargeZ1 (orZ2). If D is not close to an integer number
then eitherδn2 or δn′

2 has an order of magnitude O(p2(n2+n′
2+m+1)e−4p). In most cases these

corrections are negligible, and energy eigenvalues are given by expansion (55) withn2

substituted instead ofν2, or by (56) withn′
2 in place ofν ′

2. Here we restrict our treatment
to the more interesting case whenD is close to some integer number for some value ofR,
and so-called pseudocrossing occurs. Thenδn2 and δn′

2 have equal orders of magnitude,
and keeping in (41) only terms of lowest order inδn2 andδn′

2 we obtain

δn2δn
′
2 = (4p)2(n2+n′

2+m+1)e−4p

n2!n′
2!(n2 +m)!(n′

2 +m)!
f (n2, n

′
2)f (n

′
2, n2) (57)

where

f (n2, n
′
2) =

∞∑
k=0

(n2 + 1)k(n′
2 + 1)kdk

k!(n2 +m+ 1)k

∞∑
k=0

(n2 + 1)kdk
k!

×
[ ∞∑
k=0

(−n2 −m)k(−n′
2 −m)kd−k

k!(−n′
2)k

∞∑
k=0

(−n′
2 −m)kd−k
k!

]−1

(58)

and(a)k = 0(a + k)/0(a) is Pochgammer’s symbol.
Coefficientsdk which enter (58) can be obtained from the recurrence relation (10) by

the method of successive approximations. Setting

d±r/d0 =
∞∑
t=r

d
(t)
±rp

−t (59)

we obtain

d
(1)
1 = −(2χ +m+ 1)(2χ ′ +m+ 1)/16

d
(2)
1 = −(2χ +m+ 1)(2χ ′ +m+ 1)(χ + χ ′ + 1)/32

d
(3)
1 = (2χ +m+ 1)(2χ ′ +m+ 1)(−209+ 18m2 −m4 − 348χ − 4m2χ − 164χ2

+4m2χ2 − 348χ ′ − 4m2χ ′ − 400χχ ′ + 16χ2χ ′ − 164χ ′2 + 4m2χ ′2

+16χχ ′2 − 16(χχ ′)2)/8192
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d
(1)
−1 = (2χ −m− 1)(2χ ′ −m− 1)/16

d
(2)
−1 = (2χ −m− 1)(2χ ′ −m− 1)(χ + χ ′ − 1)/32

d
(3)
−1 = (2χ −m− 1)(2χ ′ −m− 1)(209− 18m2 +m4 − 348χ − 4m2χ + 164χ2

−4m2χ2 − 348χ ′ − 4m2χ ′ + 400χχ ′ + 16χ2χ ′ + 164χ ′2 − 4m2χ ′2

+16χχ ′2 + 16(χχ ′)2)/8192

d
(2)
2 = −(2χ +m+ 3)(2χ +m+ 1)(2χ ′ +m+ 3)(2χ ′ +m+ 1)/512

d
(3)
2 = (2χ +m+ 3)(2χ +m+ 1)(2χ ′ +m+ 3)(2χ ′ +m+ 1)(2χ + 2χ ′ + 3)/1024

d
(2)
−2 = (2χ −m− 3)(2χ −m− 1)(2χ ′ −m− 3)(2χ ′ −m− 1)/512

d
(3)
−2 = (2χ −m− 3)(2χ −m− 1)(2χ ′ −m− 3)(2χ ′ −m− 1)(2χ + 2χ ′ − 3)/1024,

d
(3)
3 = −(2χ +m+ 5)(2χ +m+ 3)(2χ +m+ 1)(2χ ′ +m+ 5)(2χ ′ +m+ 3)

(2χ ′ +m+ 1)/24576

d
(3)
−3 = (2χ −m− 5)(2χ −m− 3)(2χ −m− 1)(2χ ′ −m− 5)(2χ ′ −m− 3)

(2χ ′ −m− 1)/24576 (60)

and so on. Since we are keeping only terms of lowest order inδn2 andδn′
2, replacements

χ → χ0 = n2+(m+1)/2 andχ ′ → χ ′
0 = n′

2+(m+1)/2 should be done before substituting
(60) in (58). We write down, as an illustration, the first few terms of the expansion for
(δn2δn

′
2)

1/2

(δn2δn
′
2)

1/2 = δ = (4p)n2+n′
2+m+1e−2p

[n2!(n2 +m)!n′
2!(n′

2 +m)!] 1/2

{
1 − 1

4p
[χ2

0 + 2ω + 4χ0χ
′
0 + χ ′

0
2]

+ 1

32p2
[(χ2

0 + 2ω + 4χ0χ
′
0 + χ ′

0
2
)2 − 2(χ0 + χ ′

0)

×(1 + χ2
0 + 6ω + 8χ0χ

′
0 + χ ′

0
2
)] + 1

384p3
[−(χ2

0 + 2ω + 4χ0χ
′
0 + χ ′

0
2
)3

+6(χ0 + χ ′
0)(χ

2
0 + 2ω + 4χ0χ

′
0 + χ ′

0
2
)(1 + χ2

0 + 6ω + 8χ0χ
′
0 + χ ′

0
2
)

−2(17χ2
0 + 5χ4 + 12ω + 78ωχ2

0 + 26ω2 − 68χ0χ
′
0 + 76χ3

0χ
′
0

+120ωχ0χ
′
0 + 17χ ′

0
2 + 168χ2

0χ
′
0

2 + 78ωχ ′
0

2 + 76χχ ′
0

3 + 5χ ′
0

4
)]

+O

(
1

p4

)}
(61)

wherep = R|Z1 − Z2|/|n2 − n′
2|. Terms up to and including O(1/p2) in expansion (61)

coincide with the result of Power [7] who assumedδn2 = δn′
2. Greenland [10] pointed

out that two exponentially small corrections are needed to determine eigenvalues of energy
when a pseudocrossing occurs. He used the normalization of wavefunctions found with the
help of a series analogous to (6), (9), and (12) to determine these corrections separately.
This approach leads to the amount of computations rapidly growing with the order of the
approximation. We propose a different method. Let us expand expressions for energy
eigenvalues from (55) and (56) in a series of powers ofδn2 and δn′

2, retaining only first
powers of these small quantities

En1ν2m = En1n2m + E′
n1n2m

δn2 En1ν
′
2m

= En1n
′
2m

+ E′
n1n

′
2m
δn′

2 (62)

where

E′
n1n2m

=
(
∂En1ν2m

∂ν2

)
ν2=n2

E′
n1n

′
2m

=
(
∂En1ν

′
2m

∂ν ′
2

)
ν ′

2=n′
2

. (63)



Problem of two Coulomb centres 569

SinceEn1n2m andEn1n
′
2m

, on the one hand, andδn2 andδn′
2 on the other, belong to different

scales of smallness, the condition of crossing of two potential curvesEn1ν2m = En1ν
′
2m

implies En1n2m = En1n
′
2m

andE′
n1n2m

δn2 = E′
n1n

′
2m
δn′

2. Then, in the frames of the used
approximation, we obtain the relation

d = δn2/δn
′
2 = E′

n1n
′
2m
/E′

n1n2m
+ O(p2(n2+n′

2+m+1)e−4p). (64)

We assume that relation (64) is valid not only at the crossing point, but also in the vicinity
of this point. From (61) and (64) we find two solutions forδn2 andδn′

2,

δn2(±) = ±δd1/2 δn′
2(±) = ±δd−1/2 (65)

and, as a consequence, two possibilities for energy curves given by (62):

E±
n1ν2m

= En1n2m + E′
n1n2m

δn2(±) E±
n1ν

′
2m

= En1n
′
2m

+ E′
n1n

′
2m
δn′

2(±). (66)

The expansion ford1/2 is easily found from (55) and (56),

d1/2 =
(
n3Z2

2

n′3Z2
1

)1/2 [
1 + 3

4Z3
1Z

3
2R

2
(n4Z4

2 − n3n1Z
4
2

+n3n2Z
4
2 − n′4Z4

1 + n′3n1Z
4
1 − n′3n′

2Z
4
1)

]
+ O(R−3) (67)

wheren = n1 + n2 +m+ 1 andn′ = n1 + n′
2 +m+ 1. In order to relate the approximate

energy eigenvalues given by equation (66) with exact potential curves, let us recall that
each exact potential curve may be labelled by the united atom quantum numbersN, l,m

as well as by the separated atom parabolic quantum numbers,n1, n2, m if the electron is
localized near the centreZ1 for R → ∞, or n′

1, n
′
2, m in the opposite case. There is

one-to-one correspondence between the united atom and separated atom quantum numbers,
and potential curves for whichn1 = n′

1 cannot cross. On the other hand, some curves
defined by 1/R expansions (55) and (56) (with exponential corrections neglected) do cross,
and different parts of these curves correspond to the exact potential curves of different
states [7]. If two curvesEn1n2m(R) andEn1n

′
2m
(R) defined by expansions (55) and (56),

whereδn2, δn
′
2 are neglected, cross at some pointR0

c, and forR > R0
c the curveEn1n2m(R)

corresponds to the exact curve labelled by the united atom quantum numbersN, l,m, then
we have

En1n2m =
{
ENlm R > R0

c

EN−1,l−1,m R < R0
c

En1n
′
2m

=
{
EN−1,l−1m R > R0

c

ENlm R < R0
c.

(68)

CurvesE±
n1ν2m

(R) and E±
n1ν

′
2m
(R) (66) which take into account exponentially small

corrections also cross, and only parts of these curves correspond to the exact potential curves
labelled by the united atom quantum numbers. In the vicinity ofR0

c this correspondence is
given by

ENlm(R) = max(E+
n1ν2m

(R),E+
n1ν

′
2m
(R))

EN−1,l−1,m(R) = min(E−
n1ν2m

(R),E−
n1ν

′
2m
(R)). (69)

Thus energy splitting in the vicinity of the pseudocrossing point is

1E(R) = ENlm(R)− EN−1,l−1,m(R) (70)
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with ENlm(R) andEN−1,l−1,m(R) defined by (69). We define the point of the pseudocrossing
Rc as the point where1E (70) takes its minimum value. (Ambiguities in the definition of
this point were discussed in [1, 7].) In order to test our asymptotic formulae, we computed
minimal splittings for someσ states of the(Z1 = 1, e, Z2) system. Computation has been
performed by taking into account exponentially small terms up to and including O(1/R4),
but in some cases (ofR not very large) terms of order O(1/R4) were larger than those of
order O(1/R3) and the expansion was truncated after terms of order O(1/R3). The results
of the computation are given in table 1. They are compared with the data of numerical
calculations taken from [16], as well as with results of Greenland’s asymptotic treatment
[10].

Table 1. Energy splittings1E at pseudocrossing pointsRc in the system(p, e, Z2) calculated
through O(1/Rk). The states are labelled by the united atom quantum numbers. Numerically
obtained valuesRnum

c and1Enum are taken from [16].1EG are the data obtained by using the
asymptotic series in [10].

Z2 (Nlm)–(N ′l′m) Rc 1E k 1EG Rnum
c 1Enum

5 (5,4,0)–(4,3,0) 13.0 4.16× 10−3 4 5.4 × 10−3 13.0 4.2 × 10−3

6 (6,5,0)–(5,4,0) 21.4 2.41× 10−5 4 — — —
(5,4,0)–(4,3,0) 7.46 10.5 × 10−2 3 9.8 × 10−2 8.1 0.10

7 (7,6,0)–(6,5,0) 31.9 2.14× 10−8 4 — — —
(6,5,0)–(5,4,0) 11.5 2.44× 10−2 4 2.9 × 10−2 11.6 2.4 × 10−2

(5,4,0)–(4,3,0) 6.19 0.277 3 0.16 6.4 0.24
8 (8,7,0)–(7,6,0) 44.3 2.88× 10−12 4 — — —

(7,6,0)–(6,5,0) 16.8 1.87× 10−3 4 2.3 × 10−3 16.8 1.96× 10−3

(6,5,0)–(5,4,0) 8.56 10.7 × 10−2 4 0.11 8.9 0.10
(5,4,0)–(4,3,0) 4.56 0.395 3 0.22 5.4 0.38

10 (8,7,0)–(7,6,0) 16.2 5.72× 10−3 4 8.0 × 10−3 16.1 6.0 × 10−3

(7,6,0)–(6,5,0) 9.76 9.47× 10−2 4 0.10 10.0 9.2 × 10−2

(6,5,0)–(5,4,0) 5.78 0.324 3 0.24 6.5 0.30
14 (10,9,0)–(9,8,0) 17.4 1.07× 10−2 4 1.5 × 10−2 17.2 1.06× 10−2

(9,8,0)–(8,7,0) 12.3 7.77× 10−2 4 9.3 × 10−2 12.2 7.0 × 10−2

(8,7,0)–(7,6,0) 8.08 0.148 3 0.20 8.9 19.6 × 10−2

4. Discussion

Comparison of our results with those of the previous asymptotic and numerical treatments
shows that, as should be expected, evaluation of additional terms of the exponentially
small asymptotic subseries improves agreement between asymptotic and numerical results,
provided charge separationR is large enough. Agreement is less satisfactory forR not very
large, when treatment limited to the first exponentially small order of corrections becomes
inadequate. Equation (41) which is basic in our treatment allows for the evaluation of
higher exponential orders. In this connection, it should be noted that constantsK andK ′

which enter this equation for real eigenvalues of energy are explicitly complex. In the case
Z1 = Z2, this phenomenon was studied in detail in [12, 13]. Its origin lies in the fact that the
divergent 1/R expansion has complex Borel sum, and the explicit imaginary series cancels
the imaginary part of the Borel sum making the sum of the entire expansion real. The
problem of summation of the asymptotic expansion including higher exponentially small
subseries in the caseZ1 6= Z2 needs further investigation.
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